

Global Case Studies for Pandemic Predictions: The Case of COVID-19

Ali H. Mokdad, Ph.D. Chief Strategy Officer, Population Health Professor, Health Metrics Sciences University of Washington

History of the Model

- Original model developed to provide estimates of COVID-19 patient hospital utilization and help hospital systems plan for the upcoming surge
 - Initially in response to a request from UW Medicine, but demand prompted expansion to all US States and additional countries
- Second generation model developed to better fit the observed declines, as many locations began to see longer, flatter peaks & slower declines
- Third generation model now released: Random knot combination spline (RKCS)-SEIR Model

Model Introduction

The IHME modeling process forecasts the following through Dec 1, 2020:

- Daily deaths
- Total deaths
- Hospital resource use for COVID-19 patients (beds, ICU bed, ventilators)
- Mobility
- Testing
- Confirmed and estimated infections

3

COVID Model Development Over the Past 3 Months

CurveFit Mar 26 – May 3	CurveFit-SEIR Hybrid May 4 – June 10	RKCS-SEIR Hybrid June 11-
 Statistical, deaths-based model Performed well initially for locations with >50 deaths Focused on predicting initial peak of hospital resource use as a function of social distancing Did not predict decline after the peak well 	 Mixture of CurveFit and SEIR Fitted a statistical model to the past and next 8 days; and an SEIR model to predict after 8 days Future transmission a function of covariates: mobility, testing, temperature, pop density Better fit to observed declines after peak 	 Analysis of cases, hospitalizations, and deaths to estimate past & next 8 days Fit an SEIR model to these trends Future transmission a function of covariates: mask use, mobility, pneumonia seasonality, testing per capita, population density, PM2.5, smoking, altitude, pneumonia death rate
● IHME ₩ UNIVERSITY of WASHING	TON 4	Institute for Health Metrics and Evaluatio

SEIR Model Fit to Death Data

$$\frac{dS}{dt} = -\frac{\beta(t)S(I_1 + I_2)^{\alpha}}{N}$$
$$\frac{dE}{dt} = \frac{\beta(t)S(I_1 + I_2)^{\alpha}}{N} - \sigma E$$
$$\frac{dI_1}{dt} = \sigma E - \gamma_1 I_1$$
$$\frac{dI_2}{dt} = \gamma_1 I_1 - \gamma_2 I_2$$
$$\frac{dR}{dt} = \gamma_2 I_2$$

SEIR model steps:

- Fit SEIR model (e.g., fit $\beta(t)$)* to past and recent death model output for all locations.
- Regress $\beta(t)$ on available covariates*
- Forecast time-varying covariates into the future
- Combine regression with forecasts to forecast β(t)*
- Run forecasted β(t) through SEIR model to forecast infections*
- Calculate deaths from infections and IFR*

IHME W UNIVERSITY of WASHINGTON

5

Key Drivers of Cases and Deaths: Mandates

Percent who say they always wear a mask when leaving home Aug 04

Data source: Facebook Global symptom survey (This research is basedon survey results from University of Maryland Social Data Science Center.)

7

Mean R_e on (July 23)

Percent infected (August 03)

Measured Antibody Sero-prevalence vs Model Predictions

Median Absolute Percent Error by Week for 6 Publicly Released Models

20% 30% 40% 50% 60% 70% 80% 90% 1009

IHME hybrid SEIR model has lowest MAPE of 13% at 6 weeks

12

SIHME | W UNIVERSITY of WASHINGTON

13

SIHME | W UNIVERSITY of WASHINGTON

14

\rightarrow	C a c	vid19.healthdata.org/iran-(islamic-republic-of)	Q 1	0	J.	9	*	A
		🖌 Iran (Islamic Republic of) 🗸						4
		Total deaths Daily deaths Infections and testing Hospital resource use Social distancing						
end	🖾 Compare	𝔅 Map						
		Hospital resource use						
		Hospital resource use indicates how equipped a location is to treat COVID-19 patients. Select All beds, ICU beds, or Invasive ventilators for descriptions of each meas	re.					
		All resources All beds ICU beds Invasive ventilators						
14-		Today						
Ok -								-
Jk-							-	
)k -								
0k -								
0k -								
Qk					100	·		
0k	All beds available		100	1	_	1		
)k -			100				3.	
0k -								·
lók -								
10k -	ICU beds available			122223				***
0-		ter 1 Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep 1 Oct 1 Date All beds needed (Current projection) ICU beds needed (Current projection) Invasive ventilators needed (Current projection)		,	Nov 1			Dec
		All resources specific to COVID-19 patients. Shaded area Indicates 95% uncertainty interval. ①						
		TAT UNIVERSITY of WASHINGTON 17 Institute f			a hui a			(alu

Excess Mortality and Antibody Testing

- In many countries, evaluation of daily all-cause mortality suggests profound underregistration of deaths and cases.
- Random sample survey of antibody prevalence using a high specificity assay can also be used to evaluate completeness of death and case detection.
- Relationship between deaths and infections, the infection-fatality rate by age, has so far been very stable. Higher than expected antibody prevalence would provide an indication of under-registration.
- Individuals respond to the epidemic by modifying their behavior avoiding contact, wearing a mask, decreasing travel, increased personal hygiene.
- Governments respond by imposing mandates

IHME W UNIVERSITY of WASHINGTON

18

Current Recommendations

- Include daily Covid-19 hospitalizations in the analysis. Trend in hospitalizations is a leading indicator that is not as sensitive to the expansion of testing as daily cases.
- Evaluate excess mortality in DHSSs in an ongoing basis.
- Undertake an antibody survey every month.
- Early phases of the epidemic transmission may take off but a clear trend has not emerged. Model forecasts should be revised weekly to reflect the state of transmission and models should be developed by province.
- Implement a universal mask mandate can reduce transmission by one third which can at the population level have a huge effect on the course of the epidemic.

IHME W UNIVERSITY of WASHINGTON

19

IHME Predictions and Scenarios

- Balancing economic activity with public health goals in some countries leading to the idea of planned intermittent mandates.
- In hotspots consider Planned Intermittent Mandates 2 or 3 weeks of strict social distancing mandates followed by 4-6 weeks of no mandates on a regular schedule may be useful if the epidemic enters a widespread phase.
- Model certain businesses closure and impact on pandemic.
- Model phased vaccination approach and impact on pandemic (certain groups first, etc...).

IHME W UNIVERSITY of WASHINGTON

Thank you!

Ali H. Mokdad, PhD Chief Strategy Officer, Population Health Professor, Health Metrics Sciences <u>mokdaa@uw.edu</u> @AliHMokdad

